
The Cubic Equation

Urs Oswald

11th January 2009

As is well known, equations of degree up to 4 can be �solved in radicals�. The solutions can be obtained,
apart from the usual arithmetic operations, by the extraction of roots. In the case of the quadratic
equation, this has a very concrete meaning. Even if the coefficients are arbitrary complex numbers, the
solutions can always be calculated by the extraction of roots from nonnegative real numbers. This can,
if necessary, even be done by hand.
It is therefore important to emphasize that, already in the case of the cubic equation with only real
coefficients, �solvability in radicals� means much less. Whenever there are three distinct real solutions,
calculating them involves finding a solution to the equation

z3 = u

for some complex, nonreal u. (To be quite precise, this is not necessary if coefficients as well as solutions
are rational.) Most of the time this cannot be done by just extracting roots from nonnegative real
numbers. Therefore, while the question of whether or not a certain equation can be solved in radicals
has had a profound influence on the development of mathematics, it is not of any decisive importance to
the actual search for solutions.

1 Arbitrary complex coefficients

As any cubic equation z3 + az2 + bz + c = 0 can be transformed to the form

z3 + pz + q = 0 (1)

by the substitution of z with z − a
3 , solving the cubic boils down to solving equation (1). The identity

(u + v)3 + p(u + v) + q = (u3 + v3 + q) + (3uv + p)(u + v) (2)

connects (1) with the system {
3uv = −p,

u3 + v3 = −q.
(3)

The idea of letting z = u + v apparently goes back to the Italien mathematician Tartaglia (1499 or
1500–1557). However, while to Tartaglia all numbers were real (and even nonnegative), we shall admit
arbitrary complex numbers.

Theorem 1

(i) If (u1, v1) is a solution of (3), then u1 + v1 is a solution of (1).

(ii) If u1 + v1 is a solution of (1) and 3u1v1 + p = 0, then (u1, v1) is a solution of (3).

(iii) If z1 is a solution of (1), then there is a solution (u1, v1) of (3) such that z1 = u1 + v1. Apart from
order, u1 and v1 are uniquely determined:

u1 =
z1

2
+ ε, v1 =

z1

2
− ε

for some ε such that ε2 =
(

z1
2

)2 + p
3 .
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Proof: (i) and (ii) are immediate consequences of (2).
(iii) The conditions u1 + v1 = z1 and u1v1 = −p

3 uniquely determine (apart from order) u1, v1 as the
solutions of the equation w2 − z1 · w − p

3 = 0. Therefore u1 = z1
2 + ε, v1 = z1

2 − ε for some ε such that
ε2 =

(
z1
2

)2 + p
3 . By (ii), (u1, v1) is a solution of (3). q.e.d.

The first equation of (3) implying u3v3 =
(
−p

3

)3, (3) implies that u3, v3 are the solutions of the equation
w2 + q · w −

(
p
3

)3 = 0. These solutions are − q
2 + δ and − q

2 − δ for some δ such that δ2 = ∆, where

∆ =
(q

2

)2

+
(p

3

)3

.

Therefore, (3) implies{
3uv = −p,
u3 = − q

2 + δ and v3 = − q
2 − δ for some δ such that δ2 = ∆.

(4)

The converse is trivially true, hence we get:

Lemma 1.1 The equation systems (3) and (4) are equivalent.

Next we prove:

Theorem 2 Let δ, u1 be such that δ2 = ∆, u3
1 = − q

2 + δ, where u1 6= 0, and let v1 = − p
3u1

. Then

(i) v3
1 = − q

2 + δ,

(ii) u1 + v1 is a solution of (1).

Proof: δ2 = ∆ =
(

q
2

)2 +
(

p
3

)3 implies that
(
−p

3

)3 =
(

q
2

)2 − δ2 =
(
− q

2 + δ
) (
− q

2 − δ
)

= u3
(
− q

2 − δ
)
.

From the definition of v1 we get v3
1 =

(
−p

3

)3 · 1
u3

1
= u3

1

(
− q

2 − δ
)
· 1

u3
1

= − q
2 − δ. So (u1, v1) is a solution

of (4) and, by Lemma 1.1, of (3). By (i) of Theorem 1, u1 + v1 is a solution of (1). q.e.d.

This theorem is, in a way, an instruction on how to obtain a solution z1:

• Find a δ such that δ2 = ∆ (can be done by extraction of roots from nonnegative real numbers).

• Find a solution u1 to the equation u3 = − q
2 + δ (by de Moivre’s formula).

• Calculate v1 = − p
3u1

.

• Let z1 = u1 + v1.

We let ζ be one of the nonreal solutions of the equation x3 = 1, let’s say

ζ =
1
2

(
−1 +

√
3 · i
)

. (5)

As z3 − 1 = (z − 1)(z2 + z + 1), ζ satisfies

ζ2 + ζ + 1 = 0. (6)

If (u1, v1) is a solution of (3), then obviously, (ζku1, ζ
−kv1) and (ζ−kv1, ζ

ku1) also are (k ∈ Z). We now
prove the converse:

Theorem 3 If (u1, v1) and (u2, v2) are both solutions of (3), then

(u2, v2) = (ζku1, ζ
−kv1) or (u2, v2) = (ζ−kv1, ζ

ku1)

for some k ∈ {0, 1, 2}.
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Proof: We first assume that p = 0. Then, e.g., u1 = v2 = 0. From the second equation of (3) follows
v3
1 = −q = u3

2. So u2 = ζkv1 for some k ∈ {0, 1, 2}. Trivially, v2 = ζ−ku1. We let k′ = 3 − k mod 3.
Then ζk′ = ζ−k and ζ−k′ = ζk, therefore (u2, v2) = (ζ−k′v1, ζ

k′u1), where k′ ∈ {0, 1, 2}. All other cases
are treated similarly.

Now we assume p 6= 0. Then Lemma 1.1 implies that for some δ such that δ2 =
(

q
2

)2 +
(

p
3

)3, u3
1 = − q

2 +δ,
and either u3

2 = − q
2 + δ or v3

2 = − q
2 + δ. In the first case, u3

2 = u3
1, and therefore u2 = ζku1 for some

k ∈ {0, 1, 2}. The first equation of (3) implies that u2v2 = u1v1 = −p, therefore ζku1v2 = u1v1. As
p 6= 0, u1 6= 0, and we conclude that ζkv2 = v1, and therefore v2 = ζ−kv1. In the second case, v3

2 = u3
1,

and therefore v2 = ζku1 for some k ∈ {0, 1, 2}. As before, u2v2 = u2ζ
ku1 = u1v1 = −p, and u2ζ

k = v1,
u2 = ζ−kv1. q.e.d.

Theorem 4 Let z1, z2, z3 be the (not necessarily distinct) solutions of (1), and let (u1, v1) be any solution
of (3). Then for k = 0, 1, 2, the values ζku1 + ζ−kv1 are a permutation of the solutions z1, z2, z3.

Proof: By (iii) of Theorem 1, each of the solutions z1, z2, z3 is of the form u′ + v′, where (u′, v′)
is a solution of (3). By Theorem 3, (u′, v′) = (ζku1, ζ

−kv1) or (u′, v′) = (ζ−kv1, ζ
ku1), and therefore

u′ + v′ = ζku1 + ζ−kv1 for some k ∈ {0, 1, 2}. q.e.d.

Example 1 The following picture illustrates how the solution of the equation z3 − (36 + 12 i)z + (126−
117 i) = 0 is reduced to the solution of the simpler equations

u3 = −q

2
+ δ = −128 + 128 i, v3 = −q

2
− δ = 2− 11 i,

where δ = −65 + 139
2 i, δ2 = ∆ = − 2421

4 − 9035 i. We can take as a start u1 = 4 + 4 i and v1 = 2− i.

u1

u2

u3

v1v2

v3

z1

z2

z3

u1 = 4 + 4 i
v1 = 2− i

We then get u2, u3 by twice rotating u1 by 2π
3 (twice multiplying u1 by ζ), and v2, v3 by twice rotating

v1 by − 2π
3 (twice multiplying v1 by ζ−1).
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Theorem 5 If z1, z2 and z3 are the solutions of (1), then

∆ = − 1
108

((z2 − z1)(z3 − z2)(z1 − z3))
2
.

Therefore

(i) ∆ 6= 0 if and only if all solutions are distinct.

(ii) If z1, z2, z3 are all distinct and real, then ∆ is also real, and ∆ < 0.

Proof: In view of Theorem 4 we may assume that z1 = u1 + v1, z2 = ζu1 + ζ−1v1, z3 = ζ2u1 + ζ−2v1

for some solution (u1, v1) of (3). We find

z2 − z1 = (ζ − 1)u1 + (ζ2 − 1)v1 = (ζ − 1)(u1 + (ζ + 1)v1) = (ζ − 1)(u1 − ζ2v1),
z1 − z3 = (1− ζ2)u1 + (1− ζ)v1 = (1− ζ)((1 + ζ)u1 + v1) = (ζ − 1)(ζ2u1 − v1)

and therefore, applying (ζ2 − ζ)2 = ζ4 − 2ζ3 + ζ2 = (ζ + ζ2)− 2 = −1− 2 = −3,

(z2 − z1)(z1 − z3) = (ζ − 1)2(u1 − ζ2v1)(ζ2u1 − v1) = (ζ − 1)2(ζ2u2
1 − ζu1v1 − u1v1 + ζ2v2

1)
= (ζ − 1)2(ζ2u2

1 + ζ2u1v1 + ζ2v2
1) = (ζ2 − ζ)2(u2

1 + u1v1 + v2
1)

= −3(u2
1 + u1v1 + v2

1).

We further have
z3 − z2 = (ζ2 − ζ)u1 + (ζ − ζ2)v1 = (ζ2 − ζ)(u1 − v1)

and therefore (z2 − z1)(z3 − z2)(z1 − z3) = −3(u2
1 + u1v1 + v2

1) · (ζ2 − ζ)(u1 − v1) = −3(ζ2 − ζ)(u3
1 − v3

1).
By Lemma 1.1, (u1, v1) is also a solution of (4), therefore u3

1 = − q
2 + δ, v3

1 = − q
2 − δ and u3

1 − v3
1 = 2δ

for some δ such that δ2 = ∆. Thus finally, ((z2 − z1)(z3 − z2)(z1 − z3))
2 = 9(−3) · 4∆ = −108 ∆. q.e.d.

2 All coefficients real

While the above results hold for arbitrary complex coefficients, we now retrict ourselves to real values of
p and q. Then ∆ =

(
q
2

)2 +
(

p
3

)3 also is real, and there are three possibilities:

I. ∆ = 0 (�vanishing discriminant�),

II. ∆ > 0 (�classical case�),

III. ∆ < 0 (�irreducibel case�).

We will show that in cases I and III, there are only real solutions, whereas in case II, there are two nonreal
solutions (which then are conjugate complex).

2.1 The case of the vanishing discriminant

Let ρ be the uniquely determined real number such that

ρ3 =
q

2
.

Then ∆ =
(

q
2

)2 +
(

p
3

)3 = 0 implies ρ6 +
(

p
3

)3 = 0,
(

p
3

)3 = −ρ6, p
3 = −ρ2. Thus we have p = −3ρ2,

q = 2ρ3, and (1) becomes
x3 − 3ρ2 · x + 2ρ3 = 0.

Obviously, one of the solutions is z1 = ρ, and after splitting off the factor x − ρ, for z2, z3 we get the
equation x2 + ρ · x− 2ρ2 = 0 having the solutions ρ and −2ρ.

Theorem 6 If p, q are real and ∆ = 0, then (1) has the solutions 3
√

q
2 , 3
√

q
2 . −2 3

√
q
2 .
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2.2 The classical case

If p and q are real, and ∆ > 0, equation (1) has one real and two nonreal solutions, the latter being
conjugate complex. We start with the following

Lemma 2.1 If z1 is a solution, then (1) is equivalent to (x− z1)(x2 + z1 · x + (z2
1 + p)) = 0, and

∆ =
1

108
(
3z2

1 + 4p
) (

3z2
1 + p

)2
= − 1

108
∆1

(
3z2

1 + p
)2

,

where ∆1 = −
(
3z2

1 + 4p
)

is the discriminant of the quadratic factor.

Proof: From z3
1 + pz1 + q = 0, we get q

2 = − 1
2

(
z3
1 + pz1

)
and therefore ∆ =

(
q
2

)2 +
(

p
3

)3 =
1
4

(
z3
1 + pz1

)2 + 1
27p3 = 1

108

(
27z6

1 + 54pz4
1 + 27p2z2

1 + 4p3
)

= 1
108

(
3z2

1 + 4p
) (

9z4
1 + 6pz2

1 + p2
)
, thus ∆ =

1
108

(
3z2

1 + 4p
) (

3z2
1 + p

)2
. For the discriminant of the quadratic factor, we find ∆1 = z2

1 − 4(z2
1 + p) =

−3z2
1 − 4p = −(3z2

1 + 4p). Hence ∆ = − 1
108∆1

(
3z2

1 + p
)2. q.e.d.

We define two real numbers u1 and v1, letting

u1 = 3

√
−q

2
+
√

∆, v1 = 3

√
−q

2
−
√

∆. (7)

Theorem 7

(i) (u1, v1) is a solution of (3).

(ii) z1 = u1 + v1 is a solution of (1).

(iii) z1 is the only real solution of (1). The other solutions are z2, z3 = 1
2

(
−(u1 + v1)±

√
3 (u1 − v1) · i

)
.

Proof: (i) 3u1v1 = 3 3

√(
− q

2 +
√

∆
)(

− q
2 +

√
∆
)

= 3 3
√(

q
2

)2 −∆ = 3 3
√(

q
2

)2 − ( q
2

)2 − (p
3

)3 = 3 3
√(

−p
3

)3,
hence 3u1v1 = −p. u3

1 + v3
1 =

(
− q

2 +
√

∆
)

+
(
− q

2 −
√

∆
)

= −q.

(ii) As (u1, v1) is a solution of (3), u1 + v1 is a solution of (1) by (i) of Theorem 1.
(iii) By Lemma 2.1, z2, z3 are the solutions of the quadratic equation x2 + z1 · x + (z2

1 + p) = 0 having
the discriminant ∆1 = −(3z2

1 + 4p). On the other hand, from (ii) we get z2
1 − (u1 − v1)2 = (u1 + v1)2 −

(u1 − v1)2 = 4u1v1 = − 4p
3 , hence z2

1 + 4p
3 = (u1 − v1)2 and ∆1 = −3(z2

1 + 4p
3 ) = −3(u1 − v1)2. Therefore

z2, z3 = 1
2

(
−z1 ±

√
3 (u1 − v1) · i

)
, where z1 = u1 + v1. q.e.d.

Of course, Theorem 7 yields the same result as Theorem 6 if ∆ = 0.

Example 2 Applying Theorem 7 to the equation x3 + x− 2 = 0, we obtain

z1 = 3

√
1 +

2
9

√
21 + 3

√
1− 2

9

√
21.

Now this seems rather surprising, because obviously, one of the solutions is z1 = 1. This is the only real
solution, as x3 + x − 2 = (x − 1)(x2 + x + 2), the second factor having no real zeroes. So we are forced
to conclude that

3

√
1 +

2
9

√
21 + 3

√
1− 2

9

√
21 = 1.

If there are rational numbers a and b such that
(
a + b

√
21
)3

= 1 + 2
9

√
21, then

(
a− b

√
21
)3

= 1− 2
9

√
21,

and the left side reduces to (a+b
√

21)+(a−b
√

21) = 2a. We therefore look for b such that
(

1
2 + b

√
21
)3

=
1 + 2

9

√
21. The conditions for b are {

1
8 + 63

2 b2 = 1
3b
4

(
1 + 28b2

)
= 2

9 .

This system has a unique solution: b = 1
6 . So the sum of the two third roots reduces to(

1
2

+
1
6

√
21
)

+
(

1
2
− 1

6

√
21
)

= 1.
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We might have reached this insight easier with the shortcut furnished by (iii) of Theorem 1. Knowing

that z1 = 1, we get ε =
√(

1
2

)2 + 1
3 = 1

6

√
21, u1 = 1

2 + 1
6

√
21, v1 = 1

2 −
1
6

√
21. For u1 − v1 we get 1

3

√
21

and finally, applying (iii) of Theorem 7, z1, z2 = 1
2

(
−1±

√
7 i
)
.

Example 3 x3 − x− 1 = 0. By Theorem 7, we get ∆ =
(

q
2

)2 +
(

p
3

)3 = 23
108 = 1

18

√
69 and

z1 = 3

√
1
2

+
1
18

√
69 + 3

√
1
2
− 1

18

√
69 ≈ 1.3247.

Any rational solution would have to be an integer, and any integer solution would have to be a divisor
of q = −1, but 1 and −1 are not solutions. So there are no rational solutions. Consequently, there is
no use looking for rational r, s such that

(
r + s

√
69
)3

= 1
2 + 1

18

√
69. If there were, this would imply(

r − s
√

69
)3

= 1
2 −

1
18

√
69, and we would have the rational solution z1 = (r + s

√
69) + (r − s

√
69) = 2r.

Theorem 8 Let z1, z2, z3 be the solutions of the equation x3 + px + q = 0 where z1 and b are real
numbers such that b > 0 and x2,3 = − z1

2 ± b · i. Then if z1 = u1 + v1,

u1, v1 =
z1

2
± b√

3
.

Proof: The equation corresponding to the given solutions is x3 +
(
b2 − 3

4z2
1

)
x + q = 0. From part (iii)

of Theorem 1 follows u1, v1 = z1
2 ± ε, where ε =

√(
z1
2

)2 + p
3 =

√
z2
1
4 + b2

3 − z2
1
4 = b√

3
. q.e.d.

Example 4 x3 + 6x − 20 = 0. We get ∆ = 108. As z1 = 2 is a solution, applying Theorem 7 (ii), we
conclude that

3
√

10 + 6
√

3 +
3
√

10− 6
√

3 = 2.

Part (iii) of Theorem 1 yields u1, v1 = 1 ± ε, where ε =
√(

z1
2

)2 + p
3 =

√
1 + 2 =

√
3. Hence u1, v1 =

1±
√

3. We indeed find
(1±

√
3)3 = 10± 6

√
3.

Splitting off the factor x− 2, we find x2,3 = −1± 3 i. Using Theorem 8, we again find u1, v1 = 1± 3√
3

=

1±
√

3.

2.3 The irreducibel case

If p, q are real, then ∆ =
(

q
2

)2 +
(

p
3

)3
< 0 implies p < 0, p = −|p|, and ∆ = −

((
|p|
3

)3

−
(

q
2

)2). We let

δ = i ·
√
−∆. Then

∣∣∣∣− q
2 + δ

∣∣∣∣ = ∣∣∣∣− q
2 + i ·

√
−∆

∣∣∣∣ =√( q
2

)2 −∆, hence

∣∣∣∣∣∣−q

2
+ δ
∣∣∣∣∣∣ =

√(
|p|
3

)3

6= 0. (8)

Therefore the equation u3 = − q
2 + δ has three distinct solutions u1, u2, u3 such that

||uk|| =
√
|p|
3
6= 0.

We let vk = − p
3uk

and xk = uk + vk (i = 1, 2, 3). Then by Theorem 2, z1, z2, z3 are solutions of (1).

From ukvk = −p
3 = |p|

3 and ukuk = ||uk||2 =
(√

|p|
3

)2

= |p|
3 = ukvk, we conclude that vk = uk and

xk = uk + uk = 2 Re(uk) = 2 ||uk|| cos(arg(uk)).
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But arg(uk) = 1
3arg(− q

2 + δ) + (k − 1) · 2π
3 , and arg(− q

2 + δ) = arg(− q
2 + i ·

√
−∆), where

√
−∆ > 0.

Therefore ϕ = arg(− q
2 + δ) = arccos

(
− q

2

||− q
2+δ||

)
= arccos

(
− q

2

√(
3
|p|

)3
)

by (8). By (i) of Theorem

5, all solutions are distinct. We can also see this directly, as 0 < ϕ < π, and therefore 0 < ϕ
3 < π

3 ,
2π
3 < ϕ

3 + 2π
3 < π, 4π

3 < ϕ
3 + 4π

3 < 5π
3 . As a consequence,

−1 < cos
(

ϕ

3
+

2π

3

)
< −1

2
< cos

(
ϕ

3
+

4π

3

)
<

1
2

< cos
ϕ

3
< 1. (9)

This implies that Re(u1), Re(u2), Re(u3), and therefore z1, z2, z3 are all distinct.

Theorem 9 If ∆ < 0, the equation (1) has three distinct real solutions:

xk = 2

√
|p|
3

cos

1
3

arccos

−q

2
·

√(
3
|p|

)3
+ (k − 1) · 2π

3

 (k = 1, 2, 3).

We might add that our deduction of course garanties that in this result, arccos is always defined. More

directly, as p < 0, the following are equivalend: ∆
>
=
<

0,
(q

2

)2

−
(
|p|
3

)3
>
=
<

0,
(q

2

)2 >
=
<

(
|p|
3

)3

, hence we

have:

Lemma 2.2 If p < 0, then ∆
>
=
<

0 if and only if

∣∣∣∣∣− q
2 ·
√(

3
|p|

)3
∣∣∣∣∣>=< 1.

2.4 Another, most elegant formulation

In view of the result of Theorem 9, we let

z = 2

√
|p|
3

w. (10)

Then (1) transforms into 8

√(
|p|
3

)3

w3 + 2p
√

|p|
3 w + q = 0. As p = 3 sgn(p) |p|3 , this is equivalent to

8

√(
|p|
3

)3

w3 + 6 sgn(p)

√(
|p|
3

)3

w = −q and, if p 6= 0, to

4w3 + 3 sgn(p)w = C, where C =
− q

2√(
|p|
3

)3
= −q

2

√(
3
|p|

)3

. (11)

Therefore, (1) is equivalent to

I. 4w3 + 3w = C, if p > 0,

II. 4w3 − 3w = C, if p < 0.

These equations match in form with the identities 4 sinh3 ϕ + 3 sinhϕ = sinh 3ϕ,

4 cosh3 ϕ − 3 coshϕ = cosh 3ϕ,
4 cos3 ϕ − 3 cos ϕ = cos 3ϕ,

(12)

whereby we have to keep in mind that the ranges of sinh, cosh, cos are R, {x ∈ R/x ≥ 1}, and {x ∈
R/|x| ≤ 1}, respectively. Comparing (11) with (12, we get
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Theorem 10

(i) w1 = sinh
(

1
3arsinh C

)
if p > 0,

(ii) w1 =
{

cosh
(

1
3arcosh C

)
if p < 0 and C ≥ 1

− cosh
(

1
3arcosh (−C)

)
if p < 0 and C ≤ −1 ,

(iii) wk = cos
(

1
3arccos C + (k − 1) · 2π

3

)
, where k = 1, 2, 3 if p < 0 and |C| ≤ 1.

By Lemma 2.2, (i) and (ii) correspond to the �classical case�, while (iii) is the result in the �irreducibel
case� (Theorem 9). There is, however, a difference. While the deduction of Theorem 9 is based on complex
numbers, the deduction of part (iii) of Theorem 10, based on the formula cos 3ϕ = 4 cos ϕ3− 3 cos ϕ, lies
wholly within the realm of the real numbers.
In order to confirm that cases (i) and (ii) of Theorem 10 lead to the result of Theorem 7, we first prove

Lemma 2.3

√(
3
|p|

)3 (
− q

2 +
√

∆
)

=

 C +
√

C2 + 1 if p > 0,

C +
√

C2 − 1 if p < 0 and C2 ≥ 1.

Proof: If p > 0, then C2 + 1 = ( q
2 )

2

( p
3 )

3 + 1 = ∆

( p
3 )

3 , therefore C +
√

C2 + 1 = 1√
( p

3 )
3

(
− q

2 +
√

∆
)

=√(
3
|p|

)3 (
− q

2 +
√

∆
)
. If p < 0 and C2 ≥ 1, then C2 − 1 = ( q

2 )
2

(− p
3 )

3 − 1 = ∆

(− p
3 )

3 ≥ 0, therefore C +

√
C2 − 1 = 1√

(− p
3 )

3

(
− q

2 +
√

∆
)

=

√(
3
|p|

)3 (
− q

2 +
√

∆
)
. q.e.d.

Theorem 11 If p > 0, or p < 0 and C2 ≥ 1, then (i) and (ii) of Theorem 10 both lead to

z1 = 2

√
|p|
3

w1 = 3

√
−q

2
+
√

∆ + 3

√
−q

2
−
√

∆.

Proof: (i). 1
3arsinh C = ln 3

√
C +

√
C2 + 1, hence w1 = sinh

(
1
3arsinh C

)
= 1

2

(
3
√

C +
√

C2 + 1− 1
3
√

C+
√

C2+1

)
.

By Lemma 2.3, 3
√

C +
√

C2 + 1 =
√

3
p

3

√
− q

2 +
√

∆, 1
3
√

C+
√

C2+1
=
√

p
3

3

√
− q

2−
√

∆

(− p
3 )

3 =
√

p
3

(
−p

3

)
3

√
− q

2 −
√

∆ =

−
√

3
p

3

√
− q

2 −
√

∆, therefore w1 = 1
2

√
3
p

(
3

√
− q

2 +
√

∆ + 3

√
− q

2 −
√

∆
)

, and z1 = 2
√

p
3 w1 = 3

√
− q

2 +
√

∆+

3

√
− q

2 −
√

∆.

(ii). The proof runs analogously to that of case (i), using that for C ≥ 1, 1
3arccos C = ln 3

√
C +

√
C2 − 1

and thus

cosh
(

1
3
arccos C

)
=

1
2

(
3
√

C +
√

C2 − 1 +
1

3
√

C +
√

C2 − 1

)
,

where, by Lemma 2.3, 3
√

C +
√

C2 − 1 =
√

3
|p|

3

√
− q

2 +
√

∆.

If C ≤ −1, the equation 4w3 − 3w = C has to be replaced by the equivalent equation 4(−w)3 − 3(−w) =
−C ≥ 1. q.e.d.
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